|
基于IP协议的因特网,目前已经发展成为当今世界上规模最大、拥有用户最多、资源最广泛的通信网络。IP协议也因此成为事实上的业界标准,以IP协议为基础的网络已经成为通信网络的主流。 1 R: @% O+ `9 j/ g: }1 W5 _$ u4 `2 F
本文将结合笔者的实践经验和思科网络技术学院CCNA课程的教学经验,就IP协议关于 3 k' Z6 S, P- w
IP地址这部分内容,进行简要的阐述。
% F3 Q7 o2 v3 y( B/ }! k8 M; u 一、为什么要使用IP地址?
9 ^/ Y, i" a& Y6 D; v, k 一个IP地址是用来标识网络中的一个通信实体,比如一台主机,或者是路由器的某一个端口。而在基于IP协议网络中传输的数据包,也都必须使用IP地址来进行标识,如同我们写一封信,要标明收信人的通信地址和发信人的地址,而邮政工作人员则通过该地址来决定邮件的去向。 # w4 Y8 V5 L5 R; u; ?1 Y, Y
同样的过程也发生在计算机网络里,每个被传输的数据包也要包括的一个源IP地址和一个目的IP地址,当该数据包在网络中进行传输时,这两个地址要保持不变,以确保网络设备总是能根据确定的IP地址,将数据包从源通信实体送往指定的目的通信实体。
" m1 q3 T: W' V: g% \7 h 目前,IP地址使用32位二进制地址格式,为方便记忆,通常使用以点号划分的十进制来表示,如:202.112.14.1。
0 R" O5 G5 x! ?' q6 h0 |" R 一个IP地址主要由两部分组成:一部分是用于标识该地址所从属的网络号;另一部分用于指明该网络上某个特定主机的主机号。
4 L% K u- B; n) {3 ] 为了给不同规模的网络提供必要的灵活性,IP地址的设计者将IP地址空间划分为五个不同的地址类别,如下表所示,其中A,B,C三类最为常用: 5 @4 n- Q* z8 B) I V
A类 0-127 0 8位 24位 % R4 o% a: |; @3 T
B类 128-191 10 16位 16位 - q. g8 [9 D X0 l
C类 192-223 110 24位 8位
C, W* n2 }) r0 F0 `0 ~ @ HD类 224-239 1110 组播地址 ! {) Q/ P% s+ [6 h) v
E类 240-255 1111 保留试验使用 $ g1 K$ |/ s' x% u& p" ?3 @
网络号由因特网权力机构分配,目的是为了保证网络地址的全球唯一性。主机地址由各个网络的管理员统一分配。因此,网络地址的唯一性与网络内主机地址的唯一性确保了IP地址的全球唯一性。
3 n3 T+ h+ n! R8 c" U 二、划分子网 + z' _+ {$ s1 t1 |/ X
为了提高IP地址的使用效率,可将一个网络划分为子网:采用借位的方式,从主机位最高位开始借位变为新的子网位,所剩余的部分则仍为主机位。这使得IP地址的结构分为三部分:网络位、子网位和主机位。
! _ G9 c5 Z6 {5 n* q8 r6 m$ s
9 h; R. m+ @* D0 \2 e) o( ` 引入子网概念后,网络位加上子网位才能全局唯一地标识一个网络。把所有的网络位用1来标识,主机位用0来标识,就得到了子网掩码。如下图所示的子网掩码转换为十进制之后为:255.255.255.224 ; m% t. F5 n9 s7 h( ?2 H. { ?
' \2 v5 E4 z+ p! v! w
1 i$ _- v; ~# o. L% t, I
子网编址使得IP地址具有一定的内部层次结构,这种层次结构便于IP地址分配和管理。 5 p8 p% ]9 a2 j6 j1 M
它的使用关键在于选择合适的层次结构--如何既能适应各种现实的物理网络规模,又能充分地利用IP地址空间(即:从何处分隔子网号和主机号)。
1 [, p5 d7 u- ?& m) g3 D
' l/ k( j. t+ n t. W+ d3 B 小窍门--子网的计算 + |! U9 j6 [- |
在思科网络技术学院CCNA教学和考试当中,不少同学在进行IP地址规划时总是很头疼子网和掩码的计算。现在给大家一个小窍门,可以顺利的解决这个问题。
' b, O* {( m D$ _首先,我们看一个CCNA考试中常见的题型:一个主机的IP地址是202.112.14.137,掩码是255.255.255.224,要求计算这个主机所在网络的网络地址和广播地址。
+ m/ i% `5 p* S: |" N! K" k 常规办法是把这个主机地址和子网掩码都换算成二进制数,两者进行逻辑与运算后即可得到网络地址。其实大家只要仔细想想,可以得到另一个方法:255.255.255.224的掩码所容纳的IP地址有256-224=32个(包括网络地址和广播地址),那么具有这种掩码的网络地址一定是32的倍数。而网络地址是子网IP地址的开始,广播地址是结束,可使用的主机地址在这个范围内,因此略小于137而又是32的倍数的只有128,所以得出网络地址是202.112.14.128。而广播地址就是下一个网络的网络地址减1。而下一个32的倍数是160,因此可以得到广播地址为202.112.14.159。可参照下图来理解本例:6 Z/ ]2 ?+ A" G1 ^/ v+ l
+ b/ J! S1 |3 m CCNA考试中,还有一种题型,要你根据每个网络的主机数量进行子网地址的规划和计算子网掩码。这也可按上述原则进行计算。比如一个子网有10台主机,那么对于这个子网就需要10+1+1+1=13个IP地址。(注意加的第一个1是指这个网络连接时所需的网关地址,接着的两个1分别是指网络地址和广播地址。)13小于16(16等于2的4次方),所以主机位为4位。而256-16=240,所以该子网掩码为255.255.255.240。 & L7 h+ b) F3 v: ~$ _' G
如果一个子网有14台主机,不少同学常犯的错误是:依然分配具有16个地址空间的子网,而忘记了给网关分配地址。这样就错误了,因为14+1+1+1=17 ,大于16,所以我们只能分配具有32个地址(32等于2的5次方)空间的子网。这时子网掩码为:255.255.255.224。 / Y$ H5 k4 A' I# l5 g* h
三、 IP 地址的局限性 " q7 H* n7 I5 b
最初的因特网设计者没有预想到网络会有如此快速地发展,因此现在网络面临的问题都可以追溯到因特网发展的早期决策上,IP地址的分配更能体现这点。 * C0 w+ v9 l* G) j2 l! F9 d* y% G
目前使用的IPv4地址使用32位的地址,即在IPv4的地址空间中有232(4,294,967,296,约为43亿)个地址可用。这样的地址空间在因特网早期看来几乎是无限的,于是便将IP地址根据申请而按类别分配给某个组织或公司,而很少考虑是否真的需要这么多个地址空间,没有考虑到IPv4地址空间最终会被用尽。" T, Q; v; m0 t4 L* d, X+ Q5 J
因此,IPv4地址是按照网络的大小(所使用的IP地址数)来分类的,它的编址方案使用"类"的概念。A、B、C三类IP地址的定义很容易理解,也很容易划分,但是在实际网络规划中,它们并不利于有效地分配有限的地址空间。对于A、B类地址,很少有这么大规模的公司能够使用,而C类地址所容纳的主机数又相对太少。所以有类别的IP地址并不利于有效地分配有限的地址空间,不适用于网络规划。
: q, j8 c5 P* W8 { 在这种情况下,人们开始致力于下一代因特网协议--IPv6的研究。由于现在IPv6的协议并不完善和成熟,需要长期的试验验证,因此,IPv4到IPv6的完全过渡将是一个比较长的过程,在过渡期间我们仍然需要在IPv4上实现网络间的互连。而在90年代初期引入了变长子网掩码(VLSM)和无类域间路由(CIDR)等机制,作为目前过渡时期提高IPv4地址空间使用效率的短期解决方案起到了很大的作用。 |
|